CSE525 Lec10: Dynamic Programming

Debajyoti Bera (M21)

Parenthesis of arithmetic expressions
$1+3 \times 2 \times 0+1 \times 6+7$ Best parenthesis position e

$$
\begin{aligned}
((1+(3 \times 2)) \times 0)+(1 \times 6)+7 & =13 \\
((1+(3 \times 2 \times 0)+1) \times 6)+7 & =19 \\
(1+3) \times 2 \times(0+1) \times(6+7) & =104
\end{aligned}
$$ value.

Consider a backtracking search tree... what would be
the possibilities?

$$
\begin{aligned}
& \left.P(i, j, k)=\left\{\begin{array}{ll}
\left(E_{i}+E_{k} k\right. & \text { if } k=i+1 \\
\max _{t=i, \ldots j} p(i, t, j)
\end{array}\right]+\left[\begin{array}{ll}
\max _{s=j+1 \cdots k} p\left(j+1, s_{k}, k\right)
\end{array}\right] \begin{array}{l}
\text { if sign is }+ \\
\text { if sign is } x
\end{array}=(7+5)+6\right)
\end{aligned}
$$

$(1)+(3 \cdots 7)$
(2) Best value fo ExprEgiven that top-level parenthesis
$(1 \cdots 2) \times(0 \cdots 7) 7)$ $(1 \cdots 2) \times(0 \cdots 7)$
$(1 \cdots 0)+(1 \cdots 7)$
$(1+3, \times 3) \times(0+1 \times 6+7)$
$((1+(3 \times 2)) \times 0)+((1 \times 6)+7)=13$
$((1+(3 \times 2) \times 0)+1) \times 6)+(7)=19$
$((1+3) \times 2) \times((0+1) \times(6+7))=104$
Maximum possible value $=$?
$(1)+(3 \times 2 \times 0+1 \times 6+7)$
$(1+3) \times(2 \times 0+1 \times 6+7)$
(1) all cases are creed

Any optimal position can be expressed
as expression over pair

> (2) optimal substructure prop.
$\mathrm{P}(\mathrm{i}, \mathrm{j}, \mathrm{k})=$ maximum possible value by grouping

What should be problem that we recursively solve? $P(1,3,5)=$ max. value from $(1,3,2) \&(0,1)=\max$. value from $(1+3 \times 2) \times(0+1)=$?

Edit Distance

$$
\begin{aligned}
& \text { ALGORITHM } \rightarrow \cdots \cdots \rightarrow \text { ALTRUISTIC } \\
& \text { dad.....d dist }=9+10=19 \\
& \text { dist }=9+10=19
\end{aligned}
$$

$\operatorname{Dist(ALGORITHM,~ALTRUISTIC)~}=$? Given $A[1 \ldots n] \& B[1 \ldots m]$, compute $A L G O R I T M$ length of smallest edit sig from $A \rightarrow B$ \rightarrow ALTRUIST I \rightarrow ALTRUISTIC

\downarrow| A | L | G | O | R | | I | | T | H | M |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | L | | T | R | U | I | S | T | I | C |
| Cases? | | | | | | | | | | |
| C | $>$ | d | c | . | i | . | i | . | c | C |

\[

\]

ALG \rightarrow ALTO
Edit Distance
$S=$ opp. editseg. from $A \cdots M \rightarrow A \cdots C$
Twee cases fo the loot $\Rightarrow S$ ends in C no -p step in $H S$ ends in i

Minimal sequence of changes for the larger instance (say, with 6 changes) must include the minimal sequence of changes (5 changes) for the smaller instance. Why? If there is a sequence with 4 or less changes, then those changes \& $\mathbf{M} \rightarrow \mathbf{C}$ (1 change) would yield a sequence with 5 or less changes for the larger instance.

Edit Distance

Dist(ALGORITHM, ALTRUISTIC) = ?

$$
\begin{aligned}
\text { off. seq. fr } & \text { ALG...THMM } \\
& \rightarrow \text { ALT...STI }
\end{aligned}
$$

Minimal sequence of changes for the larger instance (say, with 7 changes) must include the minimal sequence of changes (5 changes) for the smaller instance. Why? If there is a sequence with 4 or less changes, then those changes \& M. \rightarrow. C (2 changes) would yield a sequence with 6 or less changes for the larger instance.

Edit Distance

Dist(ALGORITHM, ALTRUISTIC) = ?

Minimal sequence of changes for the larger instance (say, with 7 changes) must include the minimal sequence of changes (5 changes) for the smaller instance. Why? If there is a sequence with 4 or less changes, then those changes \& . $\mathbf{M} \rightarrow \mathbf{C} .(2$ changes) would yield a sequence with 6 or less changes for the larger instance.

Edit Distance

Try all possibilities to convert M to C

